Temperaturbestimmung in Rundleitern bei veränderlicher Isolatorwärmekapazität

Bachelorarbeit

Autor:
Dominik Kalb

Betreuer:
Dipl.-Math. Karl Dvorsky

Prüfer:
Prof. Dr. sc. math. habil. Joachim Gwinner

02.03.2010

Universität der Bundeswehr München
Fakultät für Luft- und Raumfahrttechnik
Institut für Mathematik und Rechneranwendung
Prof. Dr. sc. math. habil. Joachim Gwinner
Hiermit versichere ich, dass ich diese Bachelorarbeit ohne fremde Hilfe erstellt und nur die angegebenen Quellen und Hilfsmittel benutzt habe.

Neubiberg, den 02.03.2010
Inhaltsverzeichnis

Abbildungsverzeichnis IV
Tabellenverzeichnis V

1 Einleitung 1

2 Grundlagen 2

2.1 Wärme und Wärmestrom 2

2.1.1 Wärme Q 2

2.1.2 Wärmestrom \dot{Q} 2

2.2 Wärmeleitfähigkeit λ 2

2.3 Wärmeübergangskoeffizient α 3

2.4 Thermodynamisches Gleichgewicht 4

2.5 Elektrotechnische Grundlagen 4

2.5.1 Ohm’sches Gesetz 4

2.5.2 Elektrische Leistung P 4

2.5.3 Magnetfeld 5

3 Herleitung der Temperaturdifferenzformeln für konstante Wärmeleitfähigkeiten 6

3.1 Notation 6

3.2 Herleitung der Temperaturdifferenzformel für $T_3 - T_2$ 8

3.2.1 Leistungsbilanz für den Übergang Leiter–Isolator 8

3.2.2 Aufgenommene Wärmeleistung 8

3.2.3 Abgegebene Wärmeleistung 9

3.2.4 Differentialgleichung der Temperaturverteilung 9

3.3 Herleitung der Temperaturdifferenzformel für $T_2 - T_1$ 10

3.3.1 Leistungsbilanz für den Übergang Isolator–Luft 11

3.3.2 Temperaturdifferenzformel für $T_2 - T_1$ 11

4 Temperaturverteilung für lineare Anhängigkeiten der Wärmeleitfähigkeit 13

4.1 Linearer Ansatz für die Wärmeleitfähigkeit $\lambda(T)$ 13

4.2 Lösung der Differentialgleichung 14
5 Temperaturverteilung für eine allgemeine Abhängigkeit von λ 15
 5.1 Annahme der Lipschitzstetigkeit von $\lambda(T)$ 15
 5.2 Nachweis der Existenz und Eindeutigkeit mit dem Satz von Picard-Lindelöf 15

6 Picard-Iteration 18

7 Anwendung der Picard-Iteration auf ein technisches Beispiel 20

Literaturverzeichnis 24
Abbildungsverzeichnis

3.1 Leiterquerschnitt [I] ... 6
3.2 Leitervolumenelement [II] .. 7
Tabellenverzeichnis

<table>
<thead>
<tr>
<th></th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Wärmeleitfähigkeit λ für verschiedene Stoffe [2]</td>
<td>3</td>
</tr>
<tr>
<td>4.1</td>
<td>Temperaturkoeffizient α_λ für verschiedene Stoffe [2]</td>
<td>14</td>
</tr>
<tr>
<td>7.1</td>
<td>Gegebene Größen für die Anwendung [2]</td>
<td>20</td>
</tr>
</tbody>
</table>
1 Einleitung

In der vorliegenden Arbeit betrachten wir einen unendlich langen, stromdurchflossenen Leiter mit Isolation. In diesem wird aufgrund der Ohm'schen Verluste Wärme freigesetzt, welche durch die Isolation hindurch an die Umgebung abgegeben wird. Für uns sind deswegen die Temperaturen an den Übergängen vom Leiter zum Isolator sowie vom Isolator zur Umgebungsluft von Interesse. Zuerst einmal wird in die zum Verständnis notwendigen thermodynamischen und elektrotechnischen Grundlagen eingeführt. Danach leiten wir die Differentialgleichung der Temperaturverteilung für eine temperaturunabhängige Wärmeleitfähigkeit anhand des Modells \([1]\) her und bestimmen die Temperaturdifferenzformeln für die beiden Übergänge. Das Ziel dieser Arbeit ist es nun, dieses Modell zu erweitern, indem wir die Differentialgleichung der Temperaturverteilung für eine lineare Temperaturabhängigkeit der Wärmeleitfähigkeit aufstellen und diese lösen. Anschließend beweisen wir mit Hilfe des Satzes von Picard–Lindelöf die Existenz und Eindeutigkeit der Lösung für die Differentialgleichung, welche auf einer nicht explizit gegebenen Wärmeleitfähigkeit basiert. Zum Abschluss der Arbeit wenden wir den zweiten Fall - für die lineare Abhängigkeit der Wärmeleitfähigkeit - auf ein technisches Beispiel an und berechnen für gegebene Größen konkrete Werte.
2 Grundlagen

2.1 Wärme und Wärmestrom

2.1.1 Wärme Q

2.1.2 Wärmestrom \dot{Q}

Der Wärmestrom \dot{Q} beschreibt quantitativ die Wärmeübertragungsvorgänge über die Systemgrenze. Er definiert sich als die in einer bestimmten Zeit δt übertragene Wärmemenge δQ:

$$\dot{Q} = \frac{\delta Q}{\delta t}$$

Die Einheiten des Wärmestroms sind W (Watt) bzw. $\frac{J}{s}$.

2.2 Wärmeleitfähigkeit λ

Die Wärmeleitfähigkeit λ ist eine temperaturabhängige Materialkonstante, die das Potential eines Stoffes ausdrückt, thermische Energie mittels Wärmeleitung zu transportieren. Die
Wärmeleitfähigkeit ist der Proportionalitätsfaktor zwischen der Wärmestromdichte \(\dot{q} \) und dem Temperaturgradienten \(\text{grad}T \) in folgender Gleichung (Fourier’sches Gesetz):

\[
\dot{q} = -\lambda \text{grad}T,
\]

wobei das Integral der Wärmestromdichte über die Fläche den Wärmestrom ergibt:

\[
\dot{Q} = \int \dot{q} \, d\vec{A}
\]

Die Einheit der Wärmeleitfähigkeit ist folglich \(\frac{W}{Km} \) bzw. \(\frac{J}{Km^2s} \). Im Folgenden wird zur Verdeutlichung eine Tabelle für verschiedene Stoffe unterschiedlicher Aggregatzustände bei 0 °C (= 273,15 K) angeführt.

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Wärmeleitfähigkeit</th>
<th>Stoff</th>
<th>Wärmeleitfähigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>0,024</td>
<td>Glas</td>
<td>0,76</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>0,17</td>
<td>Beton</td>
<td>0,80 ... 1,40</td>
</tr>
<tr>
<td>Xenon</td>
<td>0,0052</td>
<td>Blei</td>
<td>35,50</td>
</tr>
<tr>
<td>Wasser</td>
<td>0,57</td>
<td>Stahl, hochlegiert</td>
<td>16,00</td>
</tr>
<tr>
<td>Öl</td>
<td>0,14</td>
<td>Stahl, unlegiert</td>
<td>46,00 ... 50,00</td>
</tr>
<tr>
<td>Quecksilber</td>
<td>8,20</td>
<td>Aluminium</td>
<td>236,00</td>
</tr>
<tr>
<td>Gummi</td>
<td>0,13 ... 0,23</td>
<td>Diamant</td>
<td>2300,00</td>
</tr>
<tr>
<td>Polyvinylchlorid</td>
<td>0,17</td>
<td>Kupfer</td>
<td>393,00</td>
</tr>
</tbody>
</table>

Tabelle 2.1: Wärmeleitfähigkeit \(\lambda \) für verschiedene Stoffe [2]

2.3 Wärmeübergangskoeffizient \(\alpha \)

Der Wärmeübergangskoeffizient \(\alpha \) ist der Proportionalitätsfaktor zwischen dem Wärmestrom \(\dot{Q} \) und der Temperaturdifferenz \(\Delta T \) zwischen Materialoberfläche und Umgebung:

\[
\dot{Q} = \alpha A \Delta T
\]

Er hängt von der Geometrie des Werkstoffes ab. Die Einheit des Wärmeübergangskoeffizienten ist somit \(\frac{W}{Km^2} \) bzw. \(\frac{J}{Km^2s} \).
2.4 Thermodynamisches Gleichgewicht

2.5 Elektrotechnische Grundlagen

Da es sich bei dem betrachteten System um einen stromdurchflossenen Leiter handelt, ist die Kenntnis allgemeiner elektrotechnischer Grundlagen vonnöten. Dazu wird hier auf diese in gegebener Kürze eingegangen.

2.5.1 Ohm’sches Gesetz

Die elektrische Stromstärke I, welche definiert ist als konstante Ladungsmenge ΔQ, die in einem Zeitintervall Δt gleichmäßig durch einen Leiter fließt, und die elektrische Spannung U sind proportional zueinander. Die Proportionalitätskonstante R ist der elektrische Widerstand. Der Zusammenhang wird als Ohm’sches Gesetz bezeichnet:

$$U = R I$$

Der elektrische Widerstand besitzt die Einheit Ω (Ohm), die elektrische Spannung V (Volt) und der elektrische Strom A (Ampere).

2.5.2 Elektrische Leistung P

Wird an einen Leiter der Länge l eine Spannung U angelegt, so entsteht in diesem Leiter ein elektrisches Feld mit der elektrischen Feldstärke E

$$E = \frac{U}{l}.$$
Dieses elektrische Feld E leistet an der Ladung Q, die von l_1 nach l_2 fließt, die Arbeit

$$W = Q \int_{l_1}^{l_2} \vec{E} \, d\vec{s} = Q \cdot U_{12} = Q \cdot U.$$

Betrachtet man nun das Zeitintervall Δt, in dem die Ladung ΔQ transportiert wird, so erhält man folgende Gleichung:

$$\Delta W = \Delta Q \cdot U = I \cdot \Delta t \cdot U \quad \text{mit} \quad I = \frac{\Delta Q}{\Delta t}.$$

Dividiert man nun die geleistete Arbeit ΔW durch das Zeitintervall Δt, so erhält man die elektrische Leistung P

$$P = \frac{\Delta W}{\Delta t} = U \cdot I.$$

2.5.3 Magnetfeld

3 Herleitung der Temperaturdifferenzformeln für konstante Wärmeleitfähigkeiten

Um die Temperaturen an den Übergängen von Leiter–Isolator und Isolator–Luft bestimmen zu können, stellen wir nun die Temperaturdifferenzformeln für $T_3 - T_2$ und für $T_2 - T_1$ auf. Zunächst erfolgt dies bei einer temperaturunabhängigen Wärmeleitfähigkeit. Die Herleitung basiert im Wesentlichen auf [1].

3.1 Notation

Um die im Folgenden verwendeten Größen zuordnen zu können, werden diese anhand zweier Abbildungen erläutert. Darauf zu sehen ist der Leiter (engl.: conductor), welcher von einem Isolator (engl.: insulator) umschlossen wird. Dieses System ist von Luft (engl.: air) umgeben.

- T_3: Temperatur am Übergang Leiter – Isolator in °C
- T_2: Temperatur am Übergang Isolator – Luft in °C
- T_1: Umgebungstemperatur in °C
- d_3: Leiterdurchmesser in mm
- d_2: Isolatordurchmesser in mm
- I: Elektrische Stromstärke in A

Abbildung 3.1: Leiterquerschnitt [1]
• U: Elektrische Spannung in V
• R: Elektrischer Widerstand in Ω
• P: Elektrische Leistung in W
• ρ: Spezifischer elektrischer Widerstand des Leitermaterials in Ωm
• λ_2: Wärmeleitfähigkeit des Isolatormaterials in $\frac{W}{K\cdot m}$
• α: Wärmeübergangskoeffizient für Zylindergeometrien in $\frac{W}{K\cdot m^2}$

Abbildung 3.2: Leitervolumenelement [1]

• V: Volumen des Leiterelementes mit $V = A \cdot l$ in mm3
• A: Leiterquerschnitt mit $A = \pi \frac{d^2}{4}$ in mm2
• A_0: Wärmeübergangsfläche mit $A_0 = 2 \pi r l$ in mm2
• n: Normalenvektor an A_0
3.2 Herleitung der Temperaturdifferenzformel für $T_3 - T_2$

Die Gleichung für die Temperaturdifferenz zwischen der Temperatur am Übergang Leiter–Isolator T_3 und am Übergang Isolator–Luft T_2

$$T_3 - T_2 = \frac{\rho I^2}{2\pi \lambda A} \ln \frac{r_2}{r_3}$$

3.2.1 Leistungsbilanz für den Übergang Leiter–Isolator

Um die Temperaturverteilung in dem elektrischen Leiter mit Isolator zu bestimmen, benötigen wir eine Gleichung, in der sowohl die Temperatur am Übergang zwischen Leiter und Isolator T_3 sowie die am Übergang zwischen Isolator und Luft T_2 beschrieben wird. Dieser Zusammenhang kann aus einer Leistungsbilanz des Wärmestroms innerhalb des Leiters mitsamt seines Isolators hergeleitet werden. Durch den 1. Hauptsatz der Thermodynamik, welcher besagt, dass sich die innere Energie nur durch den Transport von Wärme über die Systemgrenzen hinweg ändert, wird die stationäre und integrierte Form des Fourier’schen Gesetzes gegeben:

$$\int_V f \, dV + \int_{A_0} \lambda \nabla T \cdot n \, dA_0 = 0$$

Der erste Term drückt dabei die vom System aufgenommene Wärmeleistung aus; der zweite die vom System abgegebene.

3.2.2 Aufgenommene Wärmeleistung

Die durch den ersten Term beschriebene aufgenommene Wärmeleistung ist im betrachteten Fall genau die elektrische Verlustleistung P des stromdurchflossenen Leiters. Diese ist das Produkt aus der elektrischen Stromstärke I und der elektrischen Spannung U.
\[
\int_V f \, dV = P = U \cdot I
\]

Diese Verlustleistung lässt sich mit Hilfe des in (2.5.1) bereits beschriebenen Ohm’schen Gesetzes wie folgt ausdrücken:

\[
P = U \cdot I = R \cdot I^2
\]

Wird nun noch der spezifische elektrische Widerstand \(\rho \) eingesetzt, so kann dieser Term folgendermaßen ausgedrückt werden:

\[
\int_V f \, dV = R \cdot I^2 = \rho \left(\frac{l}{A} \right) I^2
\]

3.2.3 Abgegebene Wärmeleistung

Die abgegebene Wärmeleistung, welche durch den zweiten Term beschrieben wird, kann durch Integration über die Wärmeübergangsfläche \(A_0 \) folgendermaßen ausgedrückt werden:

\[
\int_{A_0} \lambda_2 \nabla T \cdot n \, dA_0 = \lambda_2 A_0 \nabla T \cdot n
\]

Dabei drückt das Skalarprodukt aus dem Temperaturgradienten \(\nabla T \) und dem Normalenvektor \(n \), welcher senkrecht auf der Manteloberfläche steht, lediglich die Ableitung der Temperatur in die radiale Richtung aus:

\[
\nabla T \cdot n = \frac{dT}{dr}
\]

Dies ist in der Rotationssymmetrie der Temperaturverteilung begründet, d.h. die Temperatur ist bei gleichem Abstand vom Mittelpunkt konstant.

3.2.4 Differentialgleichung der Temperaturverteilung

Aus den vorherigen Schritten lässt sich nun folgende Relation bestimmen:
Herleitung der Temperaturdifferenzformeln für konstante Wärmeleitfähigkeiten

\[\rho l I^2 + \lambda_2 2 \pi l \frac{dT}{dr} = 0 \]

Dieser Zusammenhang lässt sich zur besseren Verdeutlichung folgendermaßen umstellen:

\[\frac{dT}{dr} = -\frac{\rho l^2}{2 \pi \lambda_2 A r} \]

Unter der Annahme, dass die Wärmeleitfähigkeit temperaturunabhängig ist und dass die Temperaturabhängigkeit des elektrischen Widerstandes am Übergang vom Leiter zum Isolator fixiert werden kann, lässt sich die Differentialgleichung durch Trennung der Variablen lösen:

\[\int_{T_2}^{T_3} dT = \int_{r_2}^{r_3} -\frac{\rho l^2}{2 \pi \lambda_2 A r} dr \]

mit \(\rho = \rho(T_3) = \rho_0(1 + \alpha \rho(T_3 - T_0)) \)

Aus der Integration folgt als Lösung die zu Beginn beschriebene Gleichung für die Temperaturverteilung:

\[T_3 - T_2 = \frac{\rho l^2}{2 \pi \lambda_2 A} \ln \frac{r_2}{r_3} \]

3.3 Herleitung der Temperaturdifferenzformel für \(T_2 - T_1 \)

Die Gleichung für die Temperaturdifferenz zwischen der Temperatur am Übergang Isolator – Luft \(T_2 \) und der Umgebungstemperatur \(T_1 \)

\[T_2 - T_1 = \frac{\rho l^2}{\pi d_2 \alpha A} \]

wird im Folgenden hergeleitet.
3.3.1 Leistungsbilanz für den Übergang Isolator–Luft

Die zweite Temperaturdifferenzformel wird mit Hilfe der Leistungsbilanz für den Übergang des Isolators zur Luft aufgestellt. Diese wird mit dem Energieerhaltungssatz aufgestellt und lautet wie folgt:

\[-\lambda_2 \nabla T \cdot n = \alpha(T) (T_2 - T_1), \quad T_2 \geq T_1\]

mit \(\alpha = \alpha(T) = \alpha_s + \alpha_k = \epsilon \sigma (T_2^2 + T_1^2) (T_2 + T_1) + \left(\frac{\alpha_d}{\sqrt{d_2}} + \alpha_T \sqrt{T_2 - T_1} \right)^2 \)

Dabei wird davon ausgegangen, dass die Temperatur am Übergang Isolator–Luft \(T_2 \) stets größer als oder zumindest gleich groß wie die Umgebungstemperatur \(T_1 \) ist, da nach dem 2. Hauptsatz der Thermodynamik niemals Wärme von einem kälteren zu einem wärmeren Körper strömt, ohne dass dabei Arbeit zugeführt wird.

3.3.2 Temperaturdifferenzformel für \(T_2 - T_1 \)

Wenn man die Gleichung nun mit der Wärmeübergangsfäche \(A_0 \), bei der es sich hier um die Zylindermantelfläche des stromdurchflossenen Leiters handelt, erweitert, erhält man folgende Gleichung:

\[-\lambda_2 A_0 \nabla T \cdot n = A_0 \alpha(T) (T_2 - T_1) \quad \text{mit} \quad A_0 = \pi d_2 l\]

Aus der Herleitung der Temperaturdifferenzformel für \(T_3 - T_2 \) folgt, dass die elektrische Verlustleistung \(P \) auch folgendermaßen beschrieben werden kann:

\[P = \rho l A^2 = -\lambda_2 A_0 \nabla T \cdot n\]

Dadurch lässt sich die Leistungsbilanz auch als

\[\rho l A^2 = \pi d_2 l \alpha (T_2 - T_1)\]
schreiben. Aus dieser Gleichung folgt nun:

\[T_2 - T_1 = \frac{\rho I^2}{\pi d_2 \alpha A} \]

Hieraus ergibt sich, dass in der Temperaturdifferenzformel für \(T_2 - T_1 \) keine Wärmeleitfähigkeit enthalten ist. Deswegen kann diese bei den folgenden Betrachtungen vernachlässigt werden.
4 Temperaturverteilung für lineare Anhängigkeiten der Wärmeleitfähigkeit

Aus dem vorherigen Kapitel geht die Differentialgleichung für die Temperatur im Leiter mit Isolator hervor:

\[
\frac{dT}{dr} = -\frac{\rho I^2}{2\pi \lambda_2 A r}
\]

In diesem Fall gehen wir allerdings von einer temperaturabhängigen Wärmeleitfähigkeit aus.

4.1 Linearer Ansatz für die Wärmeleitfähigkeit \(\lambda(T) \)

Wir wählen

\[
\lambda(T) = \lambda_0 \left(1 + \alpha_\lambda (T - T_0^{(\lambda)})\right).
\]

Dabei wird eine Fallunterscheidung getroffen, da bei einigen Stoffen die Wärmeleitfähigkeit mit steigender Temperatur sinkt und bei anderen steigt. Dies äußert sich in der Gleichung anhand eines negativen Temperaturkoeffizienten \(\alpha_\lambda \) des Isolators für die sinkende und eines positiven für die steigende.

\[
(I) \quad \alpha_\lambda > 0
\]

\[
(II) \quad \alpha_\lambda < 0
\]

Weiterhin wird die bei einer Referenztemperatur \(T_0^{(\lambda)} \) gemessene oder tabellarisch bekannte Wärmeleitfähigkeit \(\lambda_0 \) verwendet. In der folgenden Tabelle sind die Temperaturkoeffizienten verschiedener Stoffe in \(10^{-6} K^{-1} \) aufgeführt, um dies zu verdeutlichen. Besonders wird dabei auf Stoffe eingegangen, welche zum Bau für Isolatoren dienen. Diese bestehen je nach Verwendung aus technischen Keramiken (Steatit, Porzellan, Aluminiumoxid-Keramik), aus Thermoplasten (Polyethylen, Polyvinylchlorid, Polytetrafluorethylen, Polyester, Polycarbonat), aus Duroplasten (Hartgewebe, Bakelit, Epoxidharz) sowie aus Glas.
4 Temperaturverteilung für lineare Anhängigkeiten der Wärmeleitfähigkeit

<table>
<thead>
<tr>
<th>Stoff</th>
<th>Temperaturkoeffizient</th>
<th>Stoff</th>
<th>Temperaturkoeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>23,0</td>
<td>Kohlenstofffaser</td>
<td>–0,5</td>
</tr>
<tr>
<td>Aluminiumoxid</td>
<td>6,7</td>
<td>Polyester</td>
<td>12,0</td>
</tr>
<tr>
<td>Aramidfaser</td>
<td>–4,1</td>
<td>Polyethylen</td>
<td>100,0 . . . 250,0</td>
</tr>
<tr>
<td>Bakelit</td>
<td>30,0 . . . 50,0</td>
<td>Polytetrafluorethylen</td>
<td>200,0</td>
</tr>
<tr>
<td>Diamant</td>
<td>1,3</td>
<td>Polyvinylchlorid</td>
<td>50,0 . . . 240,0</td>
</tr>
<tr>
<td>Eisen</td>
<td>12,2</td>
<td>Porzellan</td>
<td>3,0</td>
</tr>
<tr>
<td>Glaskeramik</td>
<td>0,1</td>
<td>Stahl</td>
<td>10,0 . . . 16,0</td>
</tr>
<tr>
<td>Gummi</td>
<td>160,0 . . . 220,0</td>
<td>Zinkcyanid</td>
<td>–18,1</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Temperaturkoeffizient α_λ für verschiedene Stoffe [2]

4.2 Lösung der Differentialgleichung

Die Differentialgleichung für die Temperatur, die im vorangegangenen Kapitel hergeleitet wurde, kann nun mit der temperaturabhängigen Wärmeleitfähigkeit aufgestellt werden:

$$\frac{dT}{dr} = -\frac{\rho I^2}{2 \pi \lambda_0 (1 + \alpha_\lambda (T - T_\lambda)) A r}$$

Diese Differentialgleichung lässt sich durch Trennung der Variablen lösen:

$$\int_{T_2}^{T_3} (1 + \alpha_\lambda (T - T_\lambda)) \ dT = \int_{r_2}^{r_3} -\frac{\rho I^2}{2 \pi \lambda_0 A} \frac{1}{r} \ dr$$

Die Integration liefert das Ergebnis

$$(1 - \alpha_\lambda T_\lambda)(T_3 - T_2) + \frac{\alpha_\lambda}{2} (T_3^2 - T_2^2) = \frac{\rho I^2}{2 \pi \lambda_0 A} \ln \frac{d_2}{d_3},$$

welches sich auch folgendermaßen darstellen lässt:

$$(T_3^2 - T_2^2) + \left(\frac{2}{\alpha_\lambda} - 2 T_\lambda\right) (T_3 - T_2) = -\frac{\rho I^2}{2 \pi \lambda_0 \alpha_\lambda A} \ln \frac{d_2}{d_3}$$

Es ist also zu sehen, dass sich bei einer linearen Gleichung für die Wärmeleitfähigkeit ein quadratischer Zusammenhang für die Temperaturdifferenzformel ergibt.
5 Temperaturverteilung für eine allgemeine Abhängigkeit von λ

Im vorherigen Kapitel wurde die Annahme getroffen, dass ein linearer Zusammenhang für die Wärmeleitfähigkeit λ besteht. Deswegen ließ sich die Differentialgleichung durch explizite Integration lösen. In diesem Kapitel wird davon ausgegangen, dass die Temperaturabhängigkeit nicht explizit bekannt ist. Die mathematischen Grundlagen wurden im Wesentlichen aus [6] entnommen.

5.1 Annahme der Lipschitzstetigkeit von $\lambda(T)$

Es wird angenommen, dass die Funktion $\lambda = \lambda(T)$ in dem vorgegebenen Intervall $B = [T_{\text{min}}, T_{\text{max}}]$ lipschitzstetig ist, d.h.

$$|\lambda(T^{(2)}) - \lambda(T^{(1)})| \leq L_{\lambda}|T^{(2)} - T^{(1)}| \quad \text{mit} \quad T^{(1)}, T^{(2)} \in B$$ \hspace{1cm} (5.1)

5.2 Nachweis der Existenz und Eindeutigkeit mit dem Satz von Picard-Lindelöf

Wir betrachten ein Anfangswertproblem der Form

$$T' = f(r,T), \quad T(r_2) = T_2,$$ \hspace{1cm} (5.2)

bei dem $f : Z \to \mathbb{R}$ eine stetige Funktion ist, für die gilt:

$$Z := [r_3, 2 r_2 - r_3] \times B \quad \text{und} \quad f(r,T) := -K \frac{1}{\lambda(T)} \frac{1}{r}$$

mit $K = \frac{\rho l^2}{2 \pi A}, \quad K > 0$
Satz 1:

Die Wärmeleitfähigkeit $\lambda : B = [T_{\text{min}}, T_{\text{max}}] \to \mathbb{R} \setminus \{0\}$ erfülle die Lipschitzbedingung (5.1) und es gelte

$$\frac{T_{\text{max}} - T_{\text{min}}}{2} \geq (r_2 - r_3) \cdot \frac{K_{\text{max}}}{r_3} \frac{1}{\lambda(T)}. \tag{5.3}$$

Dann besitzt das Anfangswertproblem (5.2) genau eine Lösung $T : [r_3, r_2] \to \mathbb{R}$.

Beweis:

Wir prüfen die Bedingungen des Satzes von Picard–Lindelöf:

1. $f(r, T) = -K \frac{1}{\lambda(T)} \frac{1}{r}$ ist offenbar stetig auf $D = [r_3, r_2] \times B$. Wir zeigen nun, dass f auch lipschitzstetig in T ist:

$$|f(r, T^{(2)}) - f(r, T^{(1)})| \leq L|T^{(2)} - T^{(1)}| \quad \text{für alle} \quad (t, T^{(2)}), (t, T^{(1)}) \in Z$$

2. Nach Picard–Lindelöf existiert genau eine Lösung T auf dem Intervall $I = [r_2 - \alpha, r_2 + \alpha]$, wobei

$$\alpha := \min\{r_2 - r_3, \frac{T_{\text{max}} - T_{\text{min}}}{2 M}\}$$

und

$$M = \max\{|f(r, T)| : (r, T) \in Z = [r_3, 2r_2 - r_3] \times B\}$$
Temperaturverteilung für eine allgemeine Abhängigkeit von λ

\[M = \max\{|-K_1 \frac{1}{\lambda(T)} r| : (r, T) \in Z\} = \max\{|K_1 \frac{1}{\lambda(T)} r| : (r, T) \in Z\} \]

\[M = K \frac{1}{r_3} \max\{\frac{1}{\lambda(T)}\} \]

Dann folgt mit (5.3) \(\frac{T_{max} - T_{min}}{2M} \geq (r_2 - r_3) \) und damit $\alpha = r_2 - r_3$. Wir erhalten danach das Lösungsintervall $I = [r_3, 2r_2 - r_3] \supset [r_3, r_2]$.
6 Picard–Iteration

Es seien die Bedingungen von Satz 1 erfüllt. Dann hat die Differentialgleichung

\[T' = f(r, T) \quad \text{mit} \quad T(r_2) = T_2 \]

genau eine Lösung auf \([r_3, r_2]\). Die zugehörige Integralgleichung lautet dann

\[T(r) = T_2 + \int_{r_2}^{r} f(t, T(t)) \, dt, \quad r \in [r_3, r_2]. \]

Damit definieren wir die Folge der Picard-Iterierten durch

\[T_{(n)}(r) = T_2 + \int_{r_2}^{r} f(t, T_{(n-1)}(t)) \, dt \quad n = 1, 2, 3 \cdots \quad (6.1) \]

Satz 2 (Fehlerabschätzung der Picard–Iteration):

Mit der Notation und den Bedingungen von Satz 1 konvergiert die Folge der Picard–Iterierten in (6.1) gegen die Lösung \(T \) aus Satz 1:

\[\lim_{n \to \infty} ||T_n - T||_{\infty} = 0 \quad r \in [r_3, r_2] \]

und erfüllt die folgende Fehlerabschätzung:

\[||T_n - T||_{\infty} \leq M L^n \frac{\alpha^{n+1}}{(n+1)!}, \]

wobei

\[M = K \frac{1}{r_3} \max\{ \frac{1}{\lambda(T)} \} \]
\[L = \frac{2K}{d_3} \frac{1}{\min|\lambda(T)|^2} L_{\lambda} \]
\[\alpha = r_2 - r_3. \]

Zum Beweis siehe z.B. [6].
7 Anwendung der Picard–Iteration auf ein technisches Beispiel

Als Beispiel für eine technische Anwendung wird ein Leiter aus Kupfer mit einem PVC–Isolationsmaterial betrachtet.

Dabei werden folgende Größen gegeben:

<table>
<thead>
<tr>
<th>Größe</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius Kupferleiter</td>
<td>(r_3) = 1 mm</td>
</tr>
<tr>
<td>Isolatorwandstärke</td>
<td>(r_2 - r_3) = 1 mm</td>
</tr>
<tr>
<td>Spezifischer Widerstand Kupfer</td>
<td>(\rho_{0,Cu}) = 17,8 \cdot 10^{-9} \Omega m</td>
</tr>
<tr>
<td>Temperaturkoeffizient Kupfer</td>
<td>(\alpha_\rho) = 3,83 \cdot 10^{-3} \frac{1}{K}</td>
</tr>
<tr>
<td>Wärmeleitfähigkeit PVC</td>
<td>(\lambda_{0,PVC}) = 0,17 \frac{W}{m K}</td>
</tr>
<tr>
<td>Temperaturkoeffizient PVC</td>
<td>(\alpha_\lambda) = 0,24 \cdot 10^{-3} \frac{1}{K}</td>
</tr>
<tr>
<td>Wärmeübergangskoeffizient</td>
<td>(\alpha_d) = 0,11 \sqrt{\frac{W}{m K}}</td>
</tr>
<tr>
<td>Wärmeübergangskoeffizient</td>
<td>(\alpha_T) = 1,08 \frac{\sqrt{W}}{m \sqrt{K}}</td>
</tr>
<tr>
<td>Emissionsgrad</td>
<td>(\epsilon) = 0,93</td>
</tr>
<tr>
<td>Stefan-Boltzmann-Konstante</td>
<td>(\sigma) = 5,67 \cdot 10^{-8} \frac{W}{m^2 K^4}</td>
</tr>
</tbody>
</table>

Tabelle 7.1: Gegebene Größen für die Anwendung [2]

Die gewählten Parameter erfüllen mit

\[
L_\lambda = \alpha_\lambda = 0,24 \cdot 10^{-3} \frac{1}{K}
\]

\[
\text{für} \quad \lambda(T) = 0,17 \cdot (1 + 0,24 \cdot 10^{-3} \frac{1}{K} (T - 293,15 \text{ K})) \frac{W}{m K}.
\]

die Lipschitzstetigkeit der Wärmeleitfähigkeit und mit

\[
\frac{350,15 \text{ K} - 298,15 \text{ K}}{2} = 26,00 \text{ K} \geq 1 \text{ mm}, \quad \frac{1}{1 \text{ mm}} \frac{20,1 \cdot 10^{-9} \text{ \Omega m} \cdot (30 \text{ A})^2}{2 \pi 10^{-6} \text{ m}^2} \frac{1}{0,170204 \frac{W}{m K}} = 16,92 \text{ K}
\]
die Bedingungen von Satz 1. Wir können damit die Picard-Iteration verwenden, um die Temperatur am Übergang Leiter–Isolator T_3 zu bestimmen. Dabei gilt die Fehlerabschätzung von Satz 2.

Als Referenztemperatur T_0 ist $293,15 \, K \, (\equiv 20 \, ^\circ C)$ gegeben. Als Startwert wird $T(r_2) = T_2$ unter der Annahme $T_1 = T_2 = T_3 = 298,15 \, K \, (\equiv 25 \, ^\circ C)$ verwendet.

α_d und α_T sind die Wärmeübergangskoeffizienten für die Abhängigkeit des Konvektionsterms von der Umströmungslänge bzw. von der Temperaturdifferenz. Sie werden zur Berechnung des Gesamtwärmeübergangskoeffizienten benötigt:

$$\alpha = \alpha(T_2) = \alpha_s + \alpha_k = 0,93 \cdot 5,67 \cdot 10^{-8} \frac{W}{m^2 \cdot K^4} \left(T_2^2 + T_1^2 \right) (T_2 + T_1) +$$

$$+ \left(\frac{0,11 \sqrt{\frac{W}{m \cdot K}}}{\sqrt{4 \cdot 10^{-3} \cdot m}} + 1,08 \frac{\sqrt{W}}{m \cdot \sqrt{K^2}} \sqrt{T_2 - T_1} \right)^2$$

Damit folgt als Gleichung für den spezifischen Widerstand des Kupferleiters

$$\rho(T) = 17,8 \cdot 10^{-9} \cdot (1 + 3,83 \cdot 10^{-3} \frac{1}{K} \left(T - 293,15 \, K \right)) \Omega m .$$

Die Iteration wird nun mit Berechnung des ersten Wertes von T_2 begonnen. Dazu benötigen wir den spezifischen Widerstand $\rho(T_3)$ und den Gesamtwärmeübertragungskoeffizienten $\alpha(T_2)$:

$$\rho(T_3) = 17,8 \cdot 10^{-9} \cdot (1 + 3,83 \cdot 10^{-3} \frac{1}{K} \left(298,15 \, K - 293,15 \, K \right)) \Omega m = 18,14 \cdot 10^{-9} \Omega m$$

$$\alpha(T_2) = 0,93 \cdot 5,67 \cdot 10^{-8} \frac{W}{m^2 \cdot K^4} \left((298,15 \, K)^2 + (298,15 \, K)^2 \right) (298,15 \, K + 298,15 \, K) +$$

$$+ \left(\frac{0,11 \sqrt{\frac{W}{m \cdot K}}}{\sqrt{4 \cdot 10^{-3} \cdot m}} + 1,08 \frac{\sqrt{W}}{m \cdot \sqrt{K^2}} \sqrt{298,15 \, K - 298,15 \, K} \right)^2 = 8,62 \frac{W}{m^2 \cdot K}$$

Daraus lässt sich die Temperatur T_2 wie folgt berechnen:

$$T_2^{(1)} = 298,15 \, K + \frac{18,14 \cdot 10^{-9}}{\pi \cdot 4 \cdot 10^{-3} \cdot 8,62 \pi \cdot 10^{-6} \cdot A^2} \cdot I^2$$
\[T_2^{(1)} = 298,15 \, K + 0,053337 \frac{K}{A^2} \cdot I^2 \]

Die Einheit \(\frac{K}{A^2} \) ergibt sich aus folgender Umrechnung:

\[\frac{\Omega \ m}{m^2 \ K \ m^2} = \frac{\Omega \ K}{W} = \frac{V}{V \ A} = \frac{K}{A^2} \]

Für die Berechnung der Temperatur \(T_3 \) benötigt man die Wärmeleitfähigkeit

\[\lambda(T_3) = 0,17 \frac{W}{m \ K} \left(1 + 0,24 \cdot 10^{-3} \frac{1}{K} \cdot (298,15 \ K - 293,15 \ K) \right) = 0,170204 \frac{W}{m \ K}. \]

Aus den bis hierhin berechneten Werten lässt sich nun die Temperatur \(T_3 \) berechnen:

\[T_3^{(1)} = 298,15 \ K + (0,053337 + 0,003743) \frac{K}{A^2} \cdot I^2 = 298,15 \ K + 0,057080 \frac{K}{A^2} \cdot I^2 \]

An diesen Gleichungen ist zu sehen, dass die Temperaturen an den Übergängen vom Leiter zum Isolator sowie vom Isolator zur Umgebungsluft erheblich von der Stromstärke \(I \) abhängen.

Im weiteren Verlauf der Iteration wird nun für die Stromstärke folgende Angabe gemacht:

\[I = 4,3 \, A \]

Daraus folgen für die Temperaturen

\[T_2^{(1)} = 299,14 \ K \triangleq 25,99 \, ^\circ C \quad \text{und} \quad T_3^{(1)} = 299,21 \ K \triangleq 26,06 \, ^\circ C. \]

Die weitere Iteration läuft nach dem bekannten Muster und ergibt für die Temperaturen folgende Werte:

\[T_2^{(2)} = 298,77 \ K \triangleq 25,62 \, ^\circ C \quad \text{und} \quad T_3^{(2)} = 298,84 \ K \triangleq 25,69 \, ^\circ C. \]
\[T_2^{(3)} = 298,80 \, K \triangleq 25,65 \, ^\circ C \quad \text{und} \quad T_3^{(3)} = 298,87 \, K \triangleq 25,72 \, ^\circ C \]

\[T_2^{(4)} = 298,80 \, K \triangleq 25,65 \, ^\circ C \quad \text{und} \quad T_3^{(4)} = 298,87 \, K \triangleq 25,72 \, ^\circ C . \]

Es ist bereits nach dem vierten Schritt der Iteration abzusehen, dass sich die Temperatur bei gegebener Stromstärke von 4 A am Übergang Leiter–Isolator \(T_3 \) dem Wert 298,35 \(K \triangleq 25,20 \, ^\circ C \) und am Übergang Isolator–Luft \(T_2 \) dem Wert 298,33 \(K \triangleq 25,18 \, ^\circ C \) annähert.

Im Vergleich zur vorher gering gewählten Stromstärke von \(I = 4,3 \, A \) wird nun die Temperatur für eine höhere Stromstärke von \(I = 30 \, A \) berechnet:

\[T_2^{(1)} = 346,15 \, K \triangleq 73,00 \, ^\circ C \quad \text{und} \quad T_3^{(1)} = 349,52 \, K \triangleq 76,37 \, ^\circ C \]

\[T_2^{(2)} = 320,83 \, K \triangleq 47,68 \, ^\circ C \quad \text{und} \quad T_3^{(2)} = 324,76 \, K \triangleq 51,61 \, ^\circ C \]

\[T_2^{(3)} = 322,21 \, K \triangleq 49,06 \, ^\circ C \quad \text{und} \quad T_3^{(3)} = 325,89 \, K \triangleq 52,74 \, ^\circ C \]

\[T_2^{(4)} = 323,34 \, K \triangleq 50,19 \, ^\circ C \quad \text{und} \quad T_3^{(4)} = 327,03 \, K \triangleq 53,88 \, ^\circ C \]

\[T_2^{(5)} = 323,27 \, K \triangleq 50,12 \, ^\circ C \quad \text{und} \quad T_3^{(5)} = 326,98 \, K \triangleq 53,83 \, ^\circ C \]

\[T_2^{(6)} = 323,27 \, K \triangleq 50,12 \, ^\circ C \quad \text{und} \quad T_3^{(6)} = 326,98 \, K \triangleq 53,83 \, ^\circ C . \]
Literaturverzeichnis

