A Varactor with High Capacitance Tuning Range in Standard 0.25µm CMOS Technology

Judith Maget, Marc Tiebout
Infineon Technologies AG
Wireless Systems
Technology and Innovation
D-81609 Munich
judith.maget@infineon.com
marc.tiebout@infineon.com

Rainer Kraus
University of Bundeswehr
Dept. of Electrical Engineering
Institute of Electronics
Werner-Heisenberg-Weg 39
D-85577 Neubiberg
rainer.kraus@unibw-muenchen.de

Abstract

This paper presents a novel MOS varactor with outstanding capacitance tuning capabilities. Several test structures have been fabricated in standard digital 0.25µm CMOS technology. The novel varactor features a $C_{\text{max}}/C_{\text{min}}$ ratio of 5.3:1. Quality factors range from 16 to 190 with an average Q of 86 at 2GHz. Thus it is outperforming all standard CMOS varactors reported up to now.

1. Introduction

LC-Tank Voltage Controlled Oscillators (VCOs) are widely used in Radio-Frequency Circuits. The core of these circuits is comprised of an integrated inductor and an integrated voltage controlled capacitance, called varactor. The values of the constant inductance L and variable capacitance C determine the frequency at which the VCO oscillates. To cover a large frequency band it is necessary to use a varactor with large tuning range $C_{\text{max}}/C_{\text{min}}$. For low phase noise of the VCO the passive elements of the tank are required to have large quality factors.

MOS-Varactors have proven to be superior to PN-Diode-Varactors [1],[3] in terms of power consumption, phase noise and tuning range. A variety of MOS-Varactors have been reported reaching capacitance ratios of up to 3.3:1 [2].

This work presents a novel varactor featuring a $C_{\text{max}}/C_{\text{min}}$ ratio of 5.3:1. It was fabricated in a standard 0.25um digital CMOS process with Shallow Trench Isolation (STI).

2. Device Structure

Figure 1 shows a cross-sectional view of the novel device.

![Cross-section of novel device](image)

Figure 1. Cross-section of novel device

It is similar to an accumulation mode varactor (A-MOS) [3]. However, in the new
structure, the well contacts (equivalent to source/drain contacts in an A-MOS varactor) are separated from the active area by STIs to reduce parasitic capacitances. The manufacturing process requires that the poly gate overlaps the STIs to a certain amount. Reducing the overlap improves the properties of the proposed structure.

The variable capacitance is the capacitance between gate and all the other terminals of the varactor. It is tuned by the N-well voltage V_w, while the RF-signal is applied to the gate in addition to the DC voltage V_g.

3. Device Characteristics

Due to the close similarity of the structures, the tuning behaviour of the new structure is close to that of an A-MOS varactor, as well described in [3].

Figure 2 shows the lumped elements that appear in the novel varactor at depletion.

![Figure 2. Lumped elements in the new structure at depletion. Dashed lines indicate depleted regions](image)

C_{ox} is the gate oxide capacitance, while C_d is the variable depletion capacitance in series. C_o are overlap and C_f fringing capacitances. C_f and C_o can be considered to be constant and are always parallel to C_{ox} and C_d. R_g denotes the series resistance introduced through the poly gate. R_{w1} to R_{w4} describe the resistive path from gate to N-well contacts (resistances within the highly doped N-well contacts are negligible.)

As C_o is small, simple formulas can be found for the effective R and C:

$$R = R_g + R_{w1} + \frac{1}{2} (R_{w2} + R_{w3} + R_{w4})$$ \[Eq.1\]

$$C = (C_{ox}^{-1} + C_d^{-1})^{-1} + 2 (C_f + C_o)$$ \[Eq. 2\]

Both values, C as well as R, depend strongly on the applied voltages. The situation at zero N-well voltage V_w is as follows: at low gate voltages V_g, the varactor is in depletion. C_d is at its minimum which results in a small overall capacitance C. With increasing V_g the device is moved into accumulation, C_d vanishes and we see a large capacitance given by C_{ox} and the parallel parasitics.

The major voltage dependence of R stems from R_{w1}, as it describes the resistance from the border of the depletion region beneath the gate to the region below the STIs. Decreasing V_g leads to a larger depletion region with smaller R_{w1} and R. The resistances R_g and R_{w2} to R_{w4} are independent of V_g.

Increasing V_w increases the gate voltage at which accumulation occurs. The basic V_g dependent behaviour of C and R does not change, it is only shifted towards higher V_g by the amount V_w has been increased.

The weak dependence of R on V_w, due to the increasing depletion region between well and substrate, is negligible.

As C and also R increase with increasing V_g the quality factor Q decreases strongly with increasing V_g, since C and R determine Q by

$$Q = (2\pi f R C)^{-1}$$ \[Eq. 3\]
4. Improved Tuning Range

[Eq.2] shows that there are two ways to improve tuning range: a reduction of parasitic capacitances and/or a decrease of the minimum possible C_d. The influence of both possibilities is tested with the proposed structure.

The constant parasitic capacitances inhibit large ratios $C_{\text{max}}/C_{\text{min}}$ when using MOSFET–varactors [3]. Figure 3 depicts the relevant capacitances of an A-MOS varactor in depletion.

The new structure reduces overlap and fringing capacitances in comparison to conventional MOSFET–varactors (compare Figures 2 and 3). The overlap capacitances are smaller since the STI is much thicker than the gate oxide. The reduction of fringing capacitances is simply achieved by increasing the distance of the gate to the N-well contacts in comparison to the distance of the gate to source and drain regions in MOSFETs. By proper layout the parasitic capacitances can easily be made much smaller than the ones appearing in conventional MOSFETs.

Decreasing the minimum C_d is achieved by implementing a small grounded p+ region at each finger according to [4]. This allows the device to reach deep depletion.

5. Measurement Results

Several prototypes of the proposed varactor have been fabricated in multifinger layout to reduce series resistances. A die photograph is shown in figure 4.

Finger length varies from 8µm to 16µm and active area widths from 0.32µm to 0.64µm. The total active area of each device is 307.2µm². The width of the STIs and therefore the distance between poly gate and N-well contacts is the same in each case.

Two-Port S-Parameters with the gate and the well contacts as nodes have been measured using an HP8510.

Values for C and Q are retrieved by

\[
C = - (2\pi f \text{Im}(Y_{11}^{-1}))^{-1}
\]

\[
Q = - \text{Im}(Y_{11}^{-1}) / \text{Re}(Y_{11}^{-1})
\]

All evaluations are carried out at a frequency of 2GHz.

Measurement results show that using large active area width and large finger length is advantageous. Figure 5 presents capacitance curves at 2GHz for the device with active area width of 0.64µm and finger length of 16µm. It features a $C_{\text{max}}/C_{\text{min}}$ ratio of 5.3:1. In comparison active area width of 0.32µm and finger length of 8µm achieves a $C_{\text{max}}/C_{\text{min}}$ ratio of 3.8:1 only.

Figure 3. Lumped elements of an A-MOS varactor in depletion. Dashed lines indicate depletion regions.

Figure 4. Die photograph
Figure 5. Capacitance at 2GHz

Figure 6 shows the quality factor at 2GHz of the varactor with a $C_{\text{max}}/C_{\text{min}}$ ratio 5.3:1. It features a maximum Q of 190, a minimum Q of 16 and a Q of 86 averaged over V_w and V_r. The CMOS varactor with the largest reported tuning range of 3.3:1 featured a maximum Q of 20 [2].

Figure 6. Quality factor at 2GHz

To investigate the influence of the p+ regions two identical devices, one with and one without p+ region, were fabricated (active area width: 0.32µm and finger length: 8µm). It was found that using the p+ regions increases the $C_{\text{max}}/C_{\text{min}}$ ratio. At 2GHz the varactor without p+ region achieved a capacitance ratio $C_{\text{max}}/C_{\text{min}}$ of 3.66, while adding the p+ region increases the value to 3.82.

6. Conclusion

A novel varactor structure is implemented in a standard digital 0.25µm CMOS technology with shallow trench isolation. Several test structures have been fabricated and measured. The novel varactor features an outstanding $C_{\text{max}}/C_{\text{min}}$ ratio of 5.3:1. At 2GHz quality factors range from 16 to 190 with an average Q of 86.

7. References

The proposed structure is patent pending.